Optical Rotatory Dispersion and Circular Dichroism Data for Some

By R. F. J. Cole, J. M. Coxon, and M. P. Hartshorn,* Chemistry Department, University of Canterbury, Christchurch, New Zealand

O.r.d. and c.d. data are reported for the epimeric 2-phenyl and 2-hydroxy-2-phenyl derivatives of (-)-bornan-3-one. The observed contributions of the *endo*-phenyl and the *exo*-hydroxy-group to the amplitude or the $\Delta \varepsilon$ value are in an opposite sense to that predicted for alkyl groups by the Octant Rule, whereas the exo-phenyl and the endohydroxy-group give contributions as predicted by the Octant Rule.

THE recent reports by Thomas and Mislow¹ on the chiroptical properties of the epimeric 3-phenylnorbornan-2-ones and of the Westfield College group ² on the 2-hydroxy- and 2-acetoxy-bornan-3-ones have prompted us to report our observations on a series of 2-phenyland 2-hydroxy-2-phenyl-bornan-3-ones. Cookson and Hudec ³ observed that in the presence of an axial phenyl group α to a carbonyl group, the $n \to \pi^*$ transition of the carbonyl compound resulted in a Cotton effect of opposite sign to that predicted by the Octant Rule. Thomas and Mislow similarly found ¹ that phenyl substitution α to a carbon group in either an exo- or an endo-configuration in some bornanones resulted in a contribution to the $n \rightarrow \pi^*$ transition (c.d. and o.r.d.) opposite to that expected from the Octant Rule. This anti-octant behaviour is probably due to electrostatic interaction between the localised transitions of the chromophores (transition moment coupling). The overlap of the carbonyl and benzene π -systems is of minor consequence in the enhancement of the u.v. absorption and optical rotatory power for the $n \rightarrow \pi^*$ transition.⁴ Hydroxyand acetoxy-substituents α to a carbonyl group in a bornanone have been shown to effect the chiroptical properties most markedly when in an endo-configuration, but always in the anti-octant sense.

Epicamphor Derivatives

We now report the chiroptical effects on bornan-3-one of 2-phenyl and 2-hydroxy-2-phenyl substitution.⁵ The spectroscopic data are summarised in Tables 1 and In contrast to the results obtained for the 3-phenyl- $\mathbf{2}$.

norbornan-2-ones,¹ no significant enhancement in the u.v. $n \rightarrow \pi^*$ absorption was observed for the *exo*phenyl ketone (1b) compared with the endo-phenyl

TABLE 1

O.r.d. data for 2-phenyl- and 2-hydroxy-2-phenyl-

- bornan-3-ones *
- (1a) 2-endo-Phenylbornan-3-one
- $\begin{array}{l} [\phi]_{250} 4421 \cdot 45, [\phi]_{256} 3196 \cdot 23, [\phi]_{258} 3356 \cdot 04, [\phi]_{262} 2343 \cdot 90, \\ [\phi]_{265} 3009 \cdot 78, [\phi]_{268} 1917 \cdot 74, [\phi]_{270} 2477 \cdot 08, [\phi]_{288} 0, \\ [\phi]_{297} + 585 \cdot 98, [\phi]_{260} 0, [\phi]_{308} 266 \cdot 35, [\phi]_{314} 2663 \cdot 52, \\ [\phi]_{220} 2343 \cdot 90, [\phi]_{326} 4794 \cdot 35, [\phi]_{350} 1811 \cdot 19, [\phi]_{400} \\ 852 \cdot 33, [\phi]_{598} 239 \cdot 72 \end{array}$
- $\begin{array}{l} [\phi]_{270} + 3425 \cdot 3, \ [\phi]_{272} + 3042 \cdot 61, \ [\phi]_{275} + 3425 \cdot 30, \ [\phi]_{280} + 3282 \cdot 57, \\ [\phi]_{300} + 1902 \cdot 94, \ [\phi]_{310} \ 0, \ [\phi]_{314} 1046 \cdot 62, \ [\phi]_{320} 1474 \cdot 78, \\ [\phi]_{327} 2402 \cdot 47, \ [\phi]_{340} \ 1665 \cdot 08, \ [\phi]_{350} 1379 \cdot 63, \ [\phi]_{400} 475 \cdot 74, \\ [\phi]_{598} 95 \cdot 5 \end{array}$
 - (1c) 2-exo-Hydroxy-2-endo-phenylbornan-3-one
- $\begin{array}{l} [\phi]_{250} 3622 \cdot 06, \ [\phi] 260 1567 \cdot 76, \ [\phi]_{263} 1811 \cdot 03, \ [\phi]_{268} 864 \cdot 97, \\ [\phi]_{270} 1135 \cdot 27, \ \ [\phi]_{277} \quad 0, \ \ [\phi]_{294} + 1324 \cdot 48, \ \ [\phi]_{307} \quad 0, \ \ [\phi]_{393} \\ 4838 \cdot 42, \ \ [\phi]_{350} 2703 \cdot 03, \ \ [\phi]_{400} 1675 \cdot 88, \ \ [\phi]_{398} 324 \cdot 36 \end{array}$
- $\begin{array}{l} (\bullet)_{260} + 6358 \cdot 19, \ [\phi]_{270} + 5485 \cdot 50, \ [\phi]_{285} + 4986 \cdot 81, \ [\phi]_{294} + 5236 \cdot 16, \\ [\phi]_{326} & 0, \ [\phi]_{338} 2368 \cdot 74, \ [\phi]_{350} 1090 \cdot 87, \ [\phi]_{400} 140 \cdot 25, \\ [\phi]_{598} + 124 \cdot 67. \end{array}$

* Cyclohexane used as solvent for all compounds; data obtained with a JASCO model ORD/UV-5 instrument fitted with a CD attachment.

ketone (1a). For the *exo*-phenyl ketone (1b), the absence of significant transition moment coupling is reflected in the o.r.d. and c.d. spectra, which reveal chiroptical

⁴ A. Moscowitz, A. E. Hansen, L. S. Forster, and K. Rosenheck, Biopolymer Symp., 1964, 1, 75. ⁵ J. M. Coxon, M. P. Hartshorn, and A. J. Lewis, Austral.

J. Chem., 1971, 24, 1009.

¹ H. T. Thomas and K. Mislow, J. Amer. Chem. Soc., 1970, 92, **6292**.

² L. Bartlett, D. N. Kirk, W. Klyne, S. R. Wallis, H. Erdtman, and S. Thoren, J. Chem. Soc. (C), 1970, 2678.

³ R. C. Cookson and J. Hudec, J. Chem. Soc., 1962, 429.

properties consistent with the Octant Rule. In contrast, the *endo*-phenyl group in compound (Ia) makes the expected anti-octant contribution. The introduction of a 2-*exo*-hydroxy-group into the *endo*-phenyl-ketone (Ia) results in a further anti-octant contribution to the hydroxy-group and the phenyl group [whose plane will be more or less eclipsed with the C(2)-O bond], or of a change in the preferred conformation of the hydroxygroup due to steric interactions with the geminal phenyl group. Conformational constraints on the phenyl group

. . .

	U	.v. spectra a	and Cotton	effects of epic	amphor and	derivatives *		
Compound Epicamphor ^{5, 6} (Ia)	U.v.		C.d.		O.r.d.			$\Delta a(a_{\rm cpd.} -$
	$\lambda_{max./nm}$ 243	ε 85	$\frac{\lambda/\mathrm{nm}}{305}$	$\begin{array}{c} \Delta \varepsilon \\ -1.86 \\ -1.44 \end{array}$	Extrema	$\begin{array}{c} a \\ (-74 \cdot 11) \ddagger \\ 52 & 00 \end{array}$	$a/\Delta \varepsilon$	$a_{\rm epicamphor})$
	249 253 259 265 292sh 301 311 322sh	120 170 219 177 47 53 49 26	317 323	-0.94 -1.18	326, 296	53·80	+37.36	+20.51
(1b)	239 244 254 260 267 270infl 288br 328	187 192 194 213 241 192 117 41 9	310 323	-1.41 -1.03	327, 294	-58.21	+41.49	+15.60
(1c)	252 259 265 268sh 282 303br	279 285 239 137 108 40	312	-1.20	333, 294	- 61·63	+41.07	+12.48
(1d)	253 259 264 270 282 299 340	$252 \\ 279 \\ 236 \\ 147 \\ 51 \\ 43 \\ 16 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		(-1.89) ‡	338, 294	76.04		-1.93

 TABLE 2

* Cyclohexane used as solvent for all compounds. \dagger Determined with a Shimadzu MPS-50L spectrometer. \ddagger Calculated by use of the relationship $\Delta \varepsilon = a/40.28.^{\circ}$

o.r.d. ($\Delta a - 7.83$). Similar introduction of a 2-endohydroxy-group into the exo-phenyl ketone (1b) leads to a further octant contribution ($\Delta a - 17.53$).

For the *exo*-phenyl ketone (1b) and its 2-hydroxyderivative (1d), the absence of significant transition moment coupling is probably a consequence of the conformational constraints imposed on the phenyl group by the 1-methyl group of the bornane system. It is not clear whether the unexpected Octant Rule contribution of the 2-*endo*-hydroxy-group in compound (1d) arises as a consequence of electronic interaction between the in compounds (1a) and (1c) are less serious and allow transition moment coupling between the phenyl and carbonyl groups, leading to anti-octant behaviour.

We acknowledge grants from the Research Committee of the New Zealand Universities Grants Committee.

[1/1665 Received, October 12th, 1971]

⁶ C. Coulombeau and A. Rassatt, Bull. Soc. chim. France, 1963, 2673.

⁷ S. F. Mason, Quart. Rev., 1963, 17, 20.